Our work has been accepted by Journal of Visualized Experiments

Academic paper

The following work has been accepted by Journal of Visualized Experiments

Assays for specific growth rate and cell-binding ability of rotavirus
Syun-suke Kadoya, Daisuke Sano
Journal of Visualized Experiments, accepted.

Previous Post
Free-Chlorine Disinfection as a Selection Pressure on Norovirus
Next Post
Our work has been accepted by Water Science and Technology

Related Articles

Academic paper

Our work with regards to the prediction of pathogen concentration in water has been accepted by Journal of Water and Health

Our work with regards to the prediction of pathogen concentration in water has been accepted by Journal of Water and Health. In this study, the prediction accuracy is improved by sign-constrained linear regression, a new statistical approach. Sign-constrained linear regression for prediction of microbe concentration based on water quality datasets Tsuyoshi Kato, Ayano Kobayashi, Wakana Oishi, Syun-suke Kadoya, Satoshi Okabe, Naoya…
Academic paper

New article of Yifan Zhu (PhD student) has been published in Water Research

New article of Yifan Zhu (PhD student) has been published in Water Research. OPEN ACCESS!!! Virus removal by membrane bioreactors: A review of mechanism investigation and modeling efforts Yifan Zhu, Rong Chen, Yu-You Li, Daisuke Sano Water Research Backgrounds: Waterborne enteric viruses in wastewater pose a serious threat to public health, to keep up with the increasing demand for water…
Academic paper

Resource recovery technologies as microbial risk barriers: towards safe use of excreta in agriculture based on hazard analysis and critical control point

The following paper was accepted by Environmental Science: Water Research & Technology. Resource recovery technologies as microbial risk barriers: towards safe use of excreta in agriculture based on hazard analysis and critical control point Wakana Oishi, Björn Vinnerås, Daisuke Sano Environmental Science: Water Research & Technology, 2023 DOI: 10.1039/D2EW00832G